โปไตสเชี่ยม (Potassium)

ชัญโญ เพ็ญชาติ พ.ย.

โปเตสเซ่ยมเย็นอ่เล่คโทรไลท่ท่ส่สาคัญ ของเซลล่ และเย็น cation ทิม่านวนมาก
 ทสดทมอยูภายในเซลลดวย ในเลอก (เซร่ม) กม่โป่เตสเซ่ยมเย็น cation เหม่อนกนั แต่มน้อยกว่าภายในเซลล์ คานวนโป่ แตส เซยม ท อยู่ ภาย ใน เซลล่ ม ประมาณ 110 mEq ต่อลิตรของจำนวนน้ำ ภายในเซลถ่ ส่วนความเข้มข้นของ โปแเทสเซิ่ยมในเซรุ่มม่เพยยง $3.5-5 \mathrm{mEq}$ ต่อลิตร ในภาวะปกติโปแตสเซั่ยมส่วนใหญู่ จะอยย่ยายในเซลล์ และโซเด่ยมส่วนใหญ่ อยูภายนอกเซลล คอ extracellular water การท่งรทำให้ไอออนทังสองอย่างน แลกท่ กันอย่ โคยเคลอนผ่านผนังเซลล์ได้ จะท้อง อาศัย active mechanisms ขางอย่าง และ ต้องใช้ energy คัวย

มัสภาวะ หลาย อย่างท่ โปแตสเซ่ยมจะ A เคลอนออกมาอยนอกเซสล และมอเลคー โทรไสท์ช ชนก อึ่น เข้าไป อยู่ แทน ทั่ ภายใน เซลล์ ภาวะนนั้ ๆคึอ

1. Acidosis ขแณะทรางกายมภาวะ เบีนกรกโกยมิจำนวนไฮโกรเย์นไอออน $\left(\mathrm{H}^{+}\right)$

ในเซรุ่มมากเกินไป ก็่ะเกกก buffering mechanism เกิขนันภายในเซลล์ เพอลก คานวนไฮโดรเย็นไอออนให้นอยยลง, จากการ ทคลอง พยว่าษมิโซเดิยม 2 โมเลกลแล: ไฮโดรเย์น 1 โมเสกล เข้าไปในเซลลล แล: โปแทสเซ่ยม 3 โมเลกลค:ถกขขออกมา นอกเซลล่ (ดังภาพหนึ่ง) ดังน้้ ขณะท่ ว่างกายมิภาวะเบ็นกรก ตวามเข้มข้นของ โปแกสเซ่ยมในเซรุ่มจะสูงข้นเสมอ
2. ทั่ Renal tubules โปเตตเซิยม จะทำ หนาท่ เศ่น เค้ยวกับไฮโครเย่น ไอออน ค โ 4 - ${ }^{\circ}$, คอ แลกเอาโซเดยมกละยเข้าไปในเซลล ตามการทกลอง พยว่าในภาวะปกทิ ทั้ง リโ \quad - $\dot{\text { a }}$ ไฮโครเย์น และโป่แฑสเซยม ทำหน้าที แลก

ภาพ 1
การแลกเปลิ่ยนโปแตสเซิ่ยม กับ โชเดี่ยม และ ไธโดรเย็นไอออน ระหว่วงในและนอกเซลล์่
 ธยง）แทเมอไฮโกรเปนไอออนเพมขน

 เม้ถิกาวะเบบบกก

3．Hyperkalemia ขณシมเซร่ม

4．Hypokalemia ขณ：รางกายขาด โปแทสเซุ่ยม เซรุ่มโป่แทสเซ่ยมจะท่ำลง

ภาพ 2
การแสตงถีงการแลกเปลิ่ยนระหว่างโซเดียยม กับ โปแตสเซ่ยมม และไรโดรเย็นไขออน ใน renal tabules

หน้าที่ของปปแตสเซ็่ยม

 ทสำคัญูทสุ ค่ หนาทเกยวกัข tissue －岛 irritable เซน เสนประสาท กลามเนอ หัวใง และการ conduction ฮองประสาท ส่วนใหญ่เก่ยวกับ neuro－muscular irritability

เราไดรับโปแทสเซุ่ยมจากอาหารเฉล่ย ปร：มาณวนละ $50-100 \mathrm{mEq}$ १ำนวนที่ถัขข้ ออกทางย゙สสาวะท่อวันกี่เอึนจำนวนเท่าๆกัย ท่ทดรัย โป่แกสเซึ่ยมม่อยู่ในอาหารทั่วๆ ไป่ มมมากในผลไม้ น้ำอัคลม โกยเฉพาะโคคา－ โคล่า เขึปซ่โคล่า

เม่อร่างกายขาจโปเแตสเซุ่ยม ไทะะไม่

 กัยโซเดคยม ต้องมกการขากโปแกสเซยยอยู่ หลายวัน ไทจังจะลคการขับถ่าย แต่เมี่ไร้ โปแฑสเซิ่มสูกว่ายกติ

ไกบ：ขับ

Hyperkalemia คอภาวะทมจานวน

 เซรุ่มโปแทสเซ่ยมสูงกว่าระกัขป่กติ ภาวะ เซ่นนพยว่าเยนสาเหตของการตายในคนไฉ้Acute tubular necrosis เสมอ ๆ ขถณะท เซรุ่ม โป แตส เซยม สูง ถิง ระ ดับ อัน ตราย

กลามเนอหวใาต:ถก effect กอน จ:มการ เปล่ยนแปลงให้เห้นได้ซักใน E.K.G.โดยม T-wave สงขัน (ดังภาพสาม) แล้วห้วใุ จะหยคในท่า diastole ${ }^{(5)}$ สำหรั่โรคไต公 เรอรงง บัญหาเรอง hyperkalemia ไม่เคยม เพราะว่า Clearance ๆองโป่เทสเซ่ยมสง มาก พงทิจคควขคมระกับโปแทส!ซยมไว ไม่ให้สงเกินระคับป่กต่
ขณะท้นยสสาวะนอ้ย มีสภาวะยางอย่าง ท่เร่งให้ร:ดับของเซร่มโปแตสเซยมสงขน 4 A 10
11. Tissue damage

ข. Fever, infection, starvation
ค. Hemolysis
ง. กินอาหารทม่โปเกตสเซยยมมาก
P. Acidosis

เมอม Nitrogen negative balance เซ่น ในข้อก. ข. ค. กังมิโปแทสเซยมมาก เซลล่อยอกามาก การกินอาหารท่มโป• แตสเซ่ยมเช้าไข่แท่ไตขับถ่ายไม่ทัน ก์จะ ม่งตัขโต่แทสเซยยมในเซ่มสงขัน สำหรัง $\dot{\Delta}$ बl η^{2}, 2 $^{4}, 2<$ สภาวะทีเยีนกรดได้กล่าวแล้วมาแท่า้างท้น

ในทางตรงข้าม ม่ภาวะยางอย่างท่ทำให ธักัยเซรุมโน่เทสเซยมสงขนช้า ขณ:ทม่ บสสาวะนต่ยงากโรค Acute renal failure A pio

ภา 3

ก．มการเค่ มนขขงโปแตสเซยมมเข้า ไปในเซสล่

タ．เมอมทขงเดินแถะดาเจยน ทเสย โแแกสเซึ่ยมยอกไปไางลำไส้

4

การิรักษา Hyperkalemia เนองหาก ไทวาย มลักนณ\％คังน ค ค

ข～～่
1．ตอง หาระกัข เซ่รุมโป่แทสเซยม เสมด เพราะคนไข้อาตงะไม่มอาการเลย レタ งนกระทงไงระย：อนตราย วกนไม่สะดวก
 4 －\quad ，\＆ ค่อทาา E．K．G．ขอยๆ แลววกการเปลยนเข่ลง ใน T －wave เราทำไกข่อย โคยไม่รขกวน คนไข้

2．ของกนหร่ากาตักภาวะทต่าเรง่ให โยแทสเซ่ยมในเซรุมสงจัน เซ่น น้องกัน แถวปกัษา infection，check acidosis งทอาหารทฟโโปแทลเซยม

3．ให้ glucose $(25-50 \%) 200-300$ ซ．ซ．รวมกัย regular insulin（1 Unit
 ความมุ่งหรมยกเพองะใหม glycogen เข้า ไป deposite ในเซลล์เลววพาโขเตสเซยยม
 レ 1 ะ ซวค่าวเทานน

4．Dialysis ม่สองวิิ．Hemodialysis． และ Peritonial－dialysis ได้ผลดททังคู่

5. ๆูลฝ่
suction จากกร่เพาะอาหาร เราสามารถ เอาโปแตสเซยยมออกได้มากพอด
(16.5 $\mathrm{mEq} / \mathrm{L}$) หงอใซ้ ${ }^{\wedge}$ Ion-exchangerasins
 อย่างกน หรอขณะนไดมการทคลองใช้เลูอด ผ่าน rasin column โดeตรง เพอเอา

นอกจากนนกอาจจัฉด calcium กั่ได้
การรักยา hyperkalemia น ถ้าย่งทำ
 ไม่ให้ ใหดดภาวะเซ่นนจะดิกว่า

นอการาก Acute renal failure เเลวว
 อน $ๆ$ เซน เ Ammonium chloride poisoning ซึเข็นผลจาก acidosis เเละ moderate renal failure การั่กยา เราก็ checkacidosis หรย๐าจเบ็นผลเนองมาจาก Adrenal Cortical Insufficiency การ รัตรากให gluco-corticoid hormone

Hypokalemia คอ สภาวะทมความ เข้มข้นข่งโปแตสเซย่ยในเซร่มต่ากว่าระดับ ปกติ ทังน ไม่ว่าจัม่านวนโย่แตสเซยมใน ร่างกายทั้งทมดต่าด้วยหงดไม่กตาม เซร่ม โ \dot{b} : \& 2,
 สาเหตของการเสยโปเตสเซยม และการ ไดรัยจากทางอาหาร ค ทพขอ่อยทสด ค่ ค่ ม

การเสิยโปไแตสเซยยมเพยงเล่กนอยโคยไม่ม อาการแสดงอ:ไรเสย เมอมการเสยโย่ \& $\alpha \Delta$ a
แตสเซยมก็จมการเสย neuro-muscular function และ renal function กัจะเป่ล่ยน
 ไปดวย เนองจากมพยากิสภาพเกิดขนท renal tubule เราเรยยว่า Hypokalemic Nephropathy อาการิเสดงม่ polyuria, polydypsia, alkalosis ขेสสาวัม pH ตา ซงเรยกวา Paradoxical acid urine

อาการทัวไยของ hypokalemia คิอ
汖 testinal ileus, bladder atony เสัเมอ
 คอ Hypokalemic Nephropathy สุดทาย * แกต muscular paralysis แต sensation ปกติ, reflex ปกติ ทัสดหว่ใควงหยด ในท่า systole ${ }^{(5)}$
การต!รวจทางห้องทดลอง จะได้ซซ่ม โบ่แตสเซยยมต่ากว่า 3.5 mE ค ต่อลตร ส่วน
 บางสภาวะถาจร่วมไปกบังกาวะเย้นกรู เซ่น ภายหลังทำ Ureterosigmoidostomy จัมิ hypokalemia แล\% hyperchlormic
 การเข่อยนแก่าง คอม $\mathrm{S}-\mathrm{T}$ segment ต่า และม U-wave (ดังราพลิ่) !ต่ E.K G. จะ

 แลิวปรากฎว่าไม่ correlate กัน เพราวการ เย่ล่ยนเปปลงทาง E．K．G．ย่งต้องดนอย่กับ 4 2 pH ขงงเละคเลเะควาเงเข้มข้นของเลอด ควย

สาเหตตท่าทาให่เกิด Hypokalemia
ก．การเสยทางลำไส้ เบีนภาวะทิพข ม่
มากทสด และพยได้ทังทางอายรกรรมแสะ คัลยกรูส เซ่น ทัยงเดิน อาเจ่ยน หั่ใน リとお

 อาเจิยน ทำใหเกิด hypokalemia ได้ การ รักยา ก์ใค้โป่เตสเซยมคนไข้อย่างช้าๆ อาจใหกนทางปากกร้ ถัารวให้ทางเส้น－ เลอกกไม่ควรเกนว้นละ $40-100 \mathrm{mEq}$

ข．คนไข้หลังผ่าตัด ถัาคนไข้สามารถ จกกนอาหารไท้ภายใน $4-5$ วัน กัไม่มข่ญหา เรองโปแตสเซยม แต่ถาคนไข้ม่สามารถ จะกินอาหารได้ ภายในกาหนดดังกล่าว กั
 ตองไม่เกินว้นละ 40 mEq ถาบสสสวะต่อวัน

ค．คนไข้ Diàvic acidosis poม

 สงเพราวผลงาก buffering mechanism
 น $थ$ ม ออกทางบัสสาวะต้วย เม่ร check acidosis थ \＆\quad ，\quad ， แลวโป่แตสเซ้ยมใน เซรู่ม จะกลัย เข้าเซลล่
 ต้องการต่วนกัไห้ทางเส้นเลอกวนละไม่เกน 100 mEq แต่ถาไม่ต่วนก่ให้คนไข้กนอาหาร ท่ ทัโปเตสเซยมมาก ๆ กัพอ

ง．เส่ยทางไตมิหลายสาเหตุด้วยกัน
1．เกดดจากโรคไตเอง เซ่น chronic pyelonephritis

2．เกิตรากไตม่ congenital defect เซ่น Renal tubular acidosis หรู
 defect ใน tubule และม้ functional
 ได ก็เลขขขโปแทสเซ่ยมออกไปแลก โซเดยมเทน ทำใหเซรุมโปเตสเซยยมต่า ลง พรอนกัขม acidosis ด้วย

3．เกดดจากม hormonal disturbance

References:-

General : Elkinton and Danowski. Sections on potassium in the Body Fluids. Williams and Wilkins. Baltimore, 1955
Schwartz, W.B. Potassium and the kidney. N.E.J.M. 253:601-608, 1955
Schwartz, W.B., Levine, and Relman. The electrocardiogram in potassium depletion. Am. J. Med. 16:395-403, 1954
Albright and Reifanstein. Sections on Renal Tubular acidosis Parathyroid glands and Metabolic Bone disease. Williams and Wilkins. Baltimore, 1948 Conn and Louis. Primary aldosteronism, A new Clinical Entity. Ann. Int. Med. 44:1-15, 1956
(1) Berliner, R.W.. Kennedy, T.J., Jr., and Orloff, J. Relationship between acidification of the urine and potassium metabolism. Am. J. Med. 11:274 1951
(2) Cooke, R.E., Segar, W.E., Cheek, D.B. Coville, F.E., and Darrow, D.C. The extrarenal correction of alkalosis associated with potassium deficiency. J. Clin, Invest. 31:798, 1952
(3) Gardner, L.I., MacLachlon, E.A., and Berman, H. Effect of potassium deficiency on carbondioxide, cation, and phosphate content of muscle J. Gen. Physiol. 36:153 1952-1953
(4) Orloff, J., Kennedy, T.J., Jr.. and Berliner, R.W. The effect of potassium in nephretomized rats with hypokalemic alkalosis. J. Clin. Invest. 32:538, 1953
(5) Goodman and Gilman. The Phamacological Basic of Therapeutics. The Macmillan Company, page 799, 1956
(6) David, C. Schechter, Thomas, F. Nealon and John, H. Gibbon. The Removal of Excessive Potassium and Ammonium from Bank Blood prior to transfasion Surgery, gynecology \& Obstetrics 108:1-6, 1959.

